

Fall 2009 Freshman Cohort Retention Report

Executive Summary

This report summarizes the retention of 1,711 students in the University of South Alabama (USA) Fall 2009 first-time full-time baccalaureate degree seeking freshman cohort. Results indicated retention of students with lower high school GPAs and students with lower composite ACT scores is a concern. Retaining students from the Florida service area will be further analyzed when National Student Clearinghouse data is available. As with the Fall 2007 and Fall 2008 cohorts, the orientation session the student attended provided a significant predictor of student persistence. Students attending the earlier Freshman Summer orientation sessions were more likely to persist than students attending the later orientation sessions.

Overview

The following report provides a detailed analysis about the retention of the 1,711 first-time full-time baccalaureate degree seeking freshmen students in the University of South Alabama (USA) Fall 2009 freshman cohort. Retention in the context of this report is defined as whether or not freshmen students persisted and enrolled one year later in the Fall 2010 semester. Similar to reports written by Institutional Research, Planning and Assessment about the Fall 2007 and Fall 2008 freshman cohorts, the input-environment-outcome (IEO) model developed by Alexander W. Astin¹ was used as a conceptual framework to guide this analysis².

Cross tabular results for each variable and whether or not the student returned are reported. Comparisons for each subgroup are made to the overall retention rate of the cohort (66%). Significant mean differences for the input, environmental, and outcome variables are also indicated.

Additionally, three logistic regression models were tested. The first model included the input³ variables. The second model included the input and the environmental⁴ variables. The final model included two outcome⁵ variables. The predictive power of each model for explaining whether or not the student returned (Yes/No) is reported as well as which variables were significant in each of the three models.

Cross Tabular Results

Cross tabular results for each variable and whether or not the student returned are summarized in the following section. Comparisons are made for each subgroup of the variable to the retention rate (66%) of the 1,711 freshmen in the cohort. These comparisons illustrate which subgroups of students persisted at

¹ Astin, A. W. (2002). Assessment for excellence: The philosophy and practice of assessment and evaluation in higher education. American Council on Education, Oryx Press.

² University of South Alabama Fall 2007 Freshman Cohort Retention Report available for reference at

² University of South Alabama Fall 2007 Freshman Cohort Retention Report available for reference at http://www.southalabama.edu/irpa/highpriority/fall07cohortfreshretenreport.pdf

³ Input variables: Gender, race/ethnicity, age, region, high school GPA, and composite ACT score.

⁴ Environmental variables: Freshman scholarship, other scholarship, housing, Freshman Seminar, college, orientation session attended, and percentage of student's courses taught by adjunct instructor.

⁵ Outcome variables: USA hours earned and USA GPA.

higher, similar, or lower rates than the overall cohort retention rate of 66 percent. In addition, significant mean differences for the input, environmental, and outcome variables are reported.

Input Variable Cross Tabular Results

For the input variables included in this analysis (see Table 1: Comparisons of Input Variables to Fall 2009 Cohort Retention Rate), female students (69%) persisted at a higher rate than male students (63%) and the retention rate mean difference was statistically significant (see Appendix: T-Test Tables). In terms of race/ethnicity, African-American (59%) and students included in the "Other" race/ethnicity subgroup⁶ (64%) persisted at a rate lower than the cohort retention rate (66%). The mean difference between African-American retention in comparison to retention of non-resident alien and Asian students was statistically significant (see Appendix: ANOVA Tables).

Table 1: Comparisons of Input Variables to Fall 2009 Cohort Retention Rate

Variable	Retention Rate >= 66%	Count	Retention Rate < 66%	Count
*Gender				
	*Female (69%)	899	Male (63%)	812
*Race/Ethnic	city			
	Non-Resident Alien (85%)	27	Other (64%)	91
	Asian (82%)	60	*African-American (59%)	376
	Hispanic (74%)	39		
	White (67%)	1,118		
*Age		•		
	*18 years old (68%)	1,305	19 years old (56%)	177
	17 years old or younger (67%)	116	20 years old (61%)	18
			22 years or older (51%)	73
			21 years old (41%)	22
*Region		•		
	*International (85%)	27	Rest of Alabama (63%)	323
	Mobile or Baldwin County (67%)	1,015	Florida Service Area (50%)	50
	Mississippi Service Area (66%)	159		
	Rest of United States (66%)	137		
*High Schoo	l GPA	•		
	*3.51-4.0 (80%)	618	2.51-3.0 (55%)	355
	3.01-3.5 (67%)	453	2.25-2.5 (42%)	99
			2.24 or lower (42%)	48
*Composite A	ACT Score	•		
•	*30 or higher (90%)	71	19-20 (65%)	335
	27-29 (81%)	145	18 or lower (55%)	291
	24-26 (72%)	316		
	21-23 (67%)	354		
		-	•	

Note: *Significant mean difference at .05 p level based on T-Test for two group comparisons or at least one group with significant mean difference at .05 p level based on Games-Howell procedure for multiple group comparisons. Significantly different group indicated by orange fill color. Comparison group indicated by "*" and gray fill color.

Retention comparisons based on age showed students who were 19 or older persisted at rates less than 62 percent. The mean difference between retention of 18 year old students in comparison to retention of 19 year old and 22 year old and older students was statistically significant (see Appendix: ANOVA Tables).

⁶ Due to the small number of students with a Hawaiian/Pacific Islander, Multiracial, Native-American, or Unknown IPEDS race/ethnicity, these four subgroups were combined into an "Other" race/ethnicity group.

Students from the rest of Alabama (63%), in other words Alabama students not from either Mobile or Baldwin County, and students from the Florida service area (50%) were least likely to return. The mean difference between retention of international students in comparison to retention of students from the Florida service area was statistically significant (see Appendix: ANOVA Tables).

Finally, as high school GPA or composite ACT score declined, retention decreased. Students who had a high school GPA of 3.0 or lower persisted at rates lower than the rate for the overall cohort (66%). Similarly, students who had a composite ACT score of 20 or lower persisted at rates lower than the cohort retention rate (66%). The mean difference between retention of students with a high school GPA of 3.51 or higher in comparison to all other high school GPA groups was statistically significant. Except for students with a composite ACT score of 27-29, the mean difference between retention of students with a composite ACT score of 30 or higher in comparison to all other composite ACT score groups was also statistically significant (see Appendix: ANOVA Tables).

Environmental Variable Cross Tabular Results

For the environmental variables included in this analysis, persistence rates illustrated that receiving scholarships positively affected retention (see Table 2: Comparison of Environmental Variables to Fall 2009 Cohort Retention Rate). Students receiving a freshman scholarship (76%) or other scholarship (68%) persisted at higher rates compared to the cohort rate (66%). Additionally, the mean difference between students who received a freshman scholarship compared to students who did not receive a freshman scholarship was statistically significant (see Appendix: T-Test Tables).

Table 2: Comparisons of Environmental Variables to Fall 2009 Cohort Retention Rate

Variable	Retention Rate >= 66%	Count	Retention Rate < 66%	Count
*Freshman Scholarshi	ip			
	*Yes (76%)	674	No (59%)	1,037
Other Scholarship	·			
	Yes (68%)	274	No (66%)	1,437
Housing				
	On campus (66%)	837	Off campus (66%)	874
Freshman Seminar				
	Yes (67%)	858	No (64%)	853
*College ⁸	·			
	*Allied Health (73%)	266	Arts & Sciences (65%)	689
	Nursing (68%)	234	Engineering (65%)	184
	Computer Science (66%)	44	Education (64%)	115
			Business (58%)	179
*Orientation Session	·			
	Summer Session 1 (79%)	303	Summer Session 4 (65%)	248
	Summer Session 2 (75%)	250	May Session (61%)	94
	Summer Session 3 (71%)	280	Summer Session 5 (59%)	282
			*August/Transfer Sessions (46%)	254
*% Taught by Adjunc	ts	•		•
<u> </u>	*Low (73%)	673	Medium (62%)	665
	No Adjuncts (67%)	191	High (58%)	156

Note: *Significant mean difference at .05 p level based on T-Test for two group comparisons or at least one group with significant mean difference at .05 p level based on Games-Howell procedure for multiple group comparisons. Significantly different group indicated by orange fill color. Comparison group indicated by "*" and gray fill color.

⁷ Other scholarship includes third party private scholarships that are not considered a USA Freshman scholarship.

 ⁸ Continuing Education retention is not reported since there was not a student from Continuing Education in this cohort.
 Institutional Research, Planning and Assessment

Page 3

Interestingly, students living on campus⁹ persisted at the same rate as students living off campus (66%). Students who took Freshman Seminar in Fall 2009 persisted at a slightly higher rate (67%) than students who did not take Freshman Seminar (64%).

Retention comparisons based on the college housing the major the student initially selected showed that Allied Health (73%) and Nursing (68%) students persisted at a higher rate than the overall cohort (66%). In addition, the mean difference for Allied Health students compared to Business students was statistically significant (see Appendix: T-Test Tables).

In terms of the orientation session attended, persistence rates of students who attended the first three Freshman Summer orientation sessions were higher than the persistence rate for the overall cohort (66%). Persistence rates based on the orientation session attended ranged from a high of 79 percent for the Freshman Session one orientation to a low of 46 percent for students who attended either the August or a Transfer orientation session. When using the August/Transfer orientation sessions as a comparison group, there was a significant mean difference between the August/Transfer orientation sessions in comparison to all five Summer Freshman orientation sessions (see Appendix: ANOVA Tables).

Finally, in order to explore the relationship between student persistence and the percentage of a student's courses taught by adjunct faculty, four comparison groups were created based on whether students were taught by: 1) no adjunct faculty, 2) a low percentage of adjunct faculty¹¹, 3) a medium percentage of adjunct faculty¹², or 4) a high percentage of adjunct faculty ¹³. Results showed students who were taught by a medium percentage (62%) or high percentage (58%) of adjunct faculty persisted at lower rates than the overall cohort (66%). Furthermore, the mean difference for students who were taught by a low percentage of adjunct faculty compared to students who were taught by a medium percentage or high percentage of adjunct faculty was statistically significant (see Appendix: T-Test Tables).

Outcome Variable Cross Tabular Results

The outcome variables incorporated into this analysis included number of hours earned through Summer 2010 at USA and the USA GPA through Summer 2010. Unsurprisingly, as number of USA hours earned increased the persistence rate also increased (see Table 3: Comparison of Outcome Variables to Fall 2009 Cohort Retention Rate). Likewise, as the USA GPA increased the persistence rate also increased.

Students who completed 18.5 or more hours through Summer 2010 persisted at a higher rate (at least 70%) compared to students completing 18 or fewer hours (at most 46%). The mean difference for students who completed 30.5 or more hours at USA compared to students in all other USA hours earned groups was statistically significant (see Appendix: ANOVA Tables).

Students with a USA GPA of 2.01 or higher through Summer 2010 persisted at a higher rate (at least 77%) compared to the cohort rate (66%) while students with a USA GPA of 2.0 or lower persisted at a much lower rate (36%). Moreover, the mean difference for students who had a USA GPA of 2.0 or lower compared to students in all other USA GPA groups was statistically significant (see Appendix: ANOVA Tables).

⁹ On campus housing includes students living in the Grove.

The orientation session of 50 students in the Fall 2009 cohort was unknown. The Office of New Student Orientation indicated these 50 students most likely attended the August orientation. In addition, 13 students attended one of three Transfer orientation sessions held in the evening to accommodate adult/working students. Since the persistence rates were similar for the August orientation group and the Transfer orientation group, the two groups were combined for this analysis.

¹¹ Low represents .01-33.33% of student's courses were taught by adjunct instructors.

¹² Medium represents 33.34-66.67% of student's courses were taught by adjunct instructors.

¹³ High represents 66.68-100% of student's courses were taught by adjunct instructors.

Table 3: Comparisons of Outcome Variables to Fall 2009 Cohort Retention Rate

Variable	Retention Rate >= 66%	Count	Retention Rate < 66%	Count	
*USA Hours Earned					
	*30.5 or more (94%)	483	12.5-18 (46%)	197	
	24.5-30 (88%)	414	6.5-12 (26%)	157	
	18.5-24 (70%)	222	0-6 (11%)	222	
*USA GPA					
	3.51-4.0 (90%)	280	*2.0 or lower (36%)	622	
	3.01-3.5 (88%)	275			
	2.51-3.0 (81%)	278			
	2.01-2.5 (77%)	240			

Note: *At least one group with significant mean difference at .05 p level based on Games-Howell procedure for multiple group comparisons. Significantly different group indicated by orange fill color. Comparison group indicated by "*" and gray fill color.

Logistic Regression Results

The focus of the study was to determine which student characteristics (inputs) and environmental characteristics (institutional/other support characteristics) can be used to best predict the persistence of USA freshmen students. Since the focus of this study was prediction and classification of a dichotomous outcome variable, stepwise logistic regression was used. This technique allows for the identification of significant variables that contribute to the classification of individuals by using an algorithm to determine the importance of predictor variables. Stepwise logistic regression was used to identify significant variables in the model for predicting the outcome variable. Results of the final step for the model are reported including the classification rate for the model. Additionally, an analysis of the proportionate change in odds for significant variables is provided.

As a part of this study, three logistic models were tested. The first model included the input variables. The second model included the input variables and the environmental variables. The third model tested the outcome variables which were number of USA hours earned through Summer 2010 and USA GPA through Summer 2010 to see what happened when these outcomes were used as predictors of retention.

The number of students (selected cases) included in each model varied based on what variables were included in the final model. Some students in the cohort had missing data, typically high school GPA and/or composite ACT score. Because complete cases were required to compute the results, the final number of students used for each model ranged from a low of 1,451 students for the second model to a high of 1,695 students for the third model. The retention rate for this subset of 1,451 students was 69 percent. With a similar retention rate (69% compared to 66%) and 1,451 students representing 85 percent of the entire cohort, the models tested provided a solid representation of retention for this population. Since the focus for the models tested was to predict *returning* students, the outcome was coded with students not returning as a "0" and students *returning* as a "1". This focus meant results would predict the odds of whether the student would *return* one year later.

Model 1: Logistic Regression with Input Variables Only

The first model consisted of three steps (see Table 4: Input Model Classification Table). The final step (step 3) of the first model showed the model correctly classified students in this cohort who returned 92 percent of the time and students who did not return 24 percent of the time for an overall classification rate of 70 percent.

Table 4: Input Model Classification Table^a

	Observed	Predicted					
		Retu	rned	Percentage			
		No	Yes	Correct			
Step 1	Returned No	75	389	16.2			
	Yes	51	951	94.9			
	Overall Percentage			70.0			
Step 2	Returned No	100	364	21.6			
	Yes	71	931	92.9			
	Overall Percentage			70.3			
Step 3	Returned No	111	353	23.9			
	Yes	83	919	91.7			
	Overall Percentage			70.3			

a. The cut value is .500

For each variable included in the first model, a comparison group was selected (gender=male, race/ethnicity=White, age=18, region=Florida service area, high school GPA=2.5 or lower, and ACT score=18 or lower). Values greater than "1" (Exp B) indicated the odds of the outcome (student *returning*) were higher compared to the selected comparison group. Values less than "1" indicated the odds of the outcome (student *returning*) were lower compared to the selected comparison group.

In the first model (see Table 5: Input Model Final Variables in the Equation), high school GPA, composite ACT score, and region were significant in the final step of the model (step 3). The final step of the model showed the odds (Exp *B*) of a student *returning* were greater for students with a higher high school GPA (2.51-3.0=2.04, 3.01-3.5=3.07, and 3.51-4.0=5.64) than for students with a high school GPA of 2.5 or lower. Additionally, the confidence intervals (95%) indicated in all comparisons the odds of a student *returning* were greater for students with a higher high school GPA than for students with a high school GPA of 2.5 or lower since the confidence intervals did not encompass an odds value less than one.

Table 5: Input Model Final Variables in the Equation

_	Table	Table 5: Input Model Final Variables in the Equation												
								95% C.I.fo	` ` ` `					
	-	В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper					
Step 1 ^a	HS_GPA (2.5 or lower)			102.065	3	.000								
	HS_GPA (2.51-3.0)	.659	.213	9.539	1	.002	1.933	1.272	2.936					
	HS_GPA (3.01-3.5)	1.128	.209	29.174	1	.000	3.090	2.052	4.654					
	HS_GPA (3.51-4.0)	1.844	.210	77.169	1	.000	6.320	4.188	9.535					
	Constant	386	.181	4.515	1	.034	.680							
Step 2 ^b	HS_GPA (2.5 or lower)			104.279	3	.000								
	HS_GPA (2.51-3.0)	.672	.215	9.808	1	.002	1.958	1.286	2.982					
	HS_GPA (3.01-3.5) HS_GPA (3.51-4.0)	1.141 1.887	.210 .212	29.482 79.331	1	.000	3.130 6.599	2.074 4.357	4.726 9.996					
	Region (FL Serv. Area)	1.007	.212	14.799	5	.011	0.000	4.007	0.000					
	Region (Mobile/Baldwin)	.990	.315	9.887	1	.002	2.692	1.452	4.991					
	Region (Rest of AL)	.724	.331	4.796	1	.029	2.063	1.079	3.945					
	Region (MS Serv. Area)	.547	.354	2.396	1	.122	1.729	.864	3.458					
	Region (Rest of US) Region (International)	.795 20.984	.387 28085.0	4.223 .000	1	.040 .999	2.215 1297830456	1.037 .000	4.727					
	Constant	-1.251	.355	12.449	1	.000	.286	.000	•					
Step 3 ^c	HS_GPA (2.5 or lower)			66.734	3	.000								
	HS_GPA (2.51-3.0)	.712	.217	10.814	1	.001	2.039	1.334	3.118					
	HS_GPA (3.01-3.5)	1.121	.212	27.895	1	.000	3.066	2.023	4.647					
	HS_GPA (3.51-4.0)	1.730	.226	58.523	1	.000	5.641	3.621	8.788					
	ACT (18 or lower)			13.195	5	.022								
	ACT (19-20)	.404	.177	5.223	1	.022	1.497	1.059	2.117					
	ACT (21-23)	.296	.177	2.775	1	.096	1.344	.949	1.903					
	ACT (24-26)	.217	.191	1.286	1	.257	1.242	.854	1.807					
	ACT (27-29)	.642	.270	5.636	1	.018	1.900	1.118	3.228					
	ACT (30 or higher)	1.205	.434	7.713	1	.005	3.338	1.426	7.816					
	Region (FL Serv. Area)			14.910	5	.011								
	Region (Mobile/Baldwin)	1.020	.316	10.400	1	.001	2.775	1.492	5.159					
	Region (Rest of AL)	.768	.333	5.337	1	.021	2.156	1.124	4.138					
	Region (MS Serv. Area)	.583	.356	2.686	1	.101	1.792	.892	3.598					
	Region (Rest of US)	.817	.389	4.411	1	.036	2.263	1.056	4.848					
	Region (International)	21.222	27908.6	.000	1	.999	1647036966	.000						
	Constant	-1.530	.378	16.401	1	.000	.217							
.,	la/a) amtarad an atan 4. LIC	CDA				-								

- a. Variable(s) entered on step 1: HS_GPA.
- b. Variable(s) entered on step 2: Region.
- c. Variable(s) entered on step 3: ACT.
- d. Comparison group for HS_GPA=2.5 or lower, Region=Florida service area, and ACT=18 or lower.

In relation to composite ACT score, the final version of this first model showed the odds (Exp *B*) of a student *returning* were greater for students with higher composite ACT scores (19-20=1.50, 21-23=1.34, 24-26=1.24, 27-29=1.90, 30 or higher=3.34) than for students with a composite ACT score of 18 or lower. Furthermore, the confidence intervals (95%) indicated the odds of a student *returning* with a composite ACT score of 19-20 or composite ACT score of 27 or higher were greater than for students with a composite ACT score of 18 or lower since the confidence intervals did not encompass an odds value less than one.

Finally, the odds of any student not from the Florida service area (Mississippi service area=1.79, rest of Alabama=2.16, rest of United States=2.26, Mobile or Baldwin County=2.78, and international

student=1,647,036,966) *returning* were greater than for students from the Florida service area. In addition, the confidence intervals (95%) indicated the odds of a student *returning* from the rest of Alabama, the rest of the United States, Mobile or Baldwin County, and students from another country (international student) were greater than for students from the Florida service area since the confidence intervals did not encompass an odds value less than one.

Model 2: Logistic Regression with Input and Environmental Variables

The second model included the input and also the environmental variables. For each environmental variable included in the second model a comparison group was selected (whether the student received a freshman scholarship=no, whether the student received an "other" scholarship=no, whether the student attended freshman seminar=no, orientation session attended=August/Transfer orientation sessions, whether the student lived on or off campus=off campus, which college housed the major the student selected at initial enrollment=Arts & Sciences, and percentage of a student's courses taught by adjunct instructors=high percentage of adjunct instructors). The correct classification rate for this second model (see Table 6: Input and Environmental Model Classification Table) remained the same as the first model at 92 percent for *returning* students. However, in comparison to the first model the classification rate for the second model slightly increased to 25 percent for students who did not return. The overall correct classification rate for the second model was 71 percent.

Table 6: Input and Environmental Model Classification Table^a

	Observed	Predicted					
		Retu	Percentage				
		No	Yes	Correct			
Step 1	Returned No	112	341	24.7			
	Yes	76	922	92.4			
	Overall Percentage			71.3			

a. The cut value is .500

The second model consisted of one step (see Table 7: Input and Environmental Model Final Variables in the Equation). Similar to the first model, high school GPA, composite ACT score, and region were significant in the final model. The final version (step 1) of the second model showed the odds (Exp *B*) of a student *returning* were greater for students with a higher high school GPA (2.51-3.0=1.85, 3.01-3.5=2.72, and 3.51-4.0=5.05) than for students with a high school GPA of 2.5 or lower. The confidence intervals (95%) indicated in all comparison groups the odds of a student *returning* were greater for students with a higher high school GPA of 2.5 or lower since the confidence intervals did not encompass an odds value less than one.

Table 7: Input and Environmental Model Final Variables in the Equation

·						•	95% C.I.fc	r EXP(B)
	В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a HS_GPA (2.5 or lower)			57.466	3	.000			
HS_GPA (2.51-3.0)	.613	.220	7.744	1	.005	1.846	1.199	2.842
HS_GPA (3.01-3.5)	1.001	.217	21.210	1	.000	2.722	1.777	4.168
HSGPA (3.51-4.0)	1.620	.231	49.107	1	.000	5.051	3.211	7.945
ACT (18 or lower)			6.464	5	.264			
ACT (19-20)	.234	.182	1.647	1	.199	1.263	.884	1.806
ACT (21-23)	.148	.183	.651	1	.420	1.159	.810	1.660
ACT (24-26)	.016	.201	.007	1	.935	1.016	.686	1.507
ACT (27-29)	.331	.279	1.408	1	.235	1.393	.806	2.408
ACT (30 or higher)	.883	.442	4.003	1	.045	2.419	1.018	5.747
Region (FL Serv. Area)			16.293	5	.006			
Region (Mobile/Baldwin)	1.002	.322	9.693	1	.002	2.725	1.450	5.122
Region (Rest of AL)	.693	.337	4.222	1	.040	2.000	1.033	3.875
Region (MS Serv. Area)	.478	.364	1.729	1	.188	1.614	.791	3.292
Region (Rest of US)	.721	.394	3.349	1	.067	2.056	.950	4.449
Region (International)	21.705	28058.740	.000	1	.999	2669574645	.000	
Orientation (August/Transfer)			22.814	6	.001			
Orientation (May)	.621	.342	3.291	1	.070	1.861	.951	3.640
Orientation (Freshman 1)	1.015	.246	16.985	1	.000	2.760	1.703	4.473
Orientation (Freshman 2)	.856	.249	11.788	1	.001	2.355	1.444	3.840
Orientation (Freshman 3)	.759	.239	10.104	1	.001	2.136	1.338	3.410
Orientation (Freshman 4)	.488	.237	4.239	1	.040	1.629	1.024	2.592
Orientation (Freshman 5)	.376	.231	2.647	1	.104	1.456	.926	2.289
Constant	-1.841	.419	19.331	1	.000	.159		

a. Variable(s) entered on step 1: Orientation.

The final version of this second model showed the odds (Exp *B*) of a student *returning* were greater for students with higher composite ACT scores (19-20=1.26, 21-23=1.16, 24-26=1.02, 27-29=1.39, 30 or higher=2.42) than for students with a composite ACT score of 18 or lower. In this second model, the confidence intervals (95%) indicated the odds of a student *returning* with a composite ACT score of 30 or higher were greater than for students with a composite ACT score of 18 or lower since the confidence intervals did not encompass an odds value less than one.

Once again the odds of any student not from the Florida service area (Mississippi service area=1.61, rest of Alabama=2.00, rest of United States=2.06, Mobile or Baldwin County=2.73, and international student=2,669,574,645) returning were greater than for students from the Florida service area. In addition, the confidence intervals (95%) indicated the odds of a student returning from the rest of Alabama, Mobile or Baldwin County, and students from another country (international student) were greater than for students from the Florida service area since the confidence intervals did not encompass an odds value less than one.

In relation to the orientation session attended, the odds of a student *returning* were the greatest for students attending the earlier Freshman Summer orientation sessions. Students attending the earlier orientation sessions had greater odds for *returning* than a student who attended the August/Transfer

b. Comparison group for HS_GPA=2.5 or lower, ACT=18 or lower, Region=Florida service area, and Orientation=August/Transfer.

orientation sessions (May=1.86, Summer 1=2.76, Summer 2=2.36, Summer 3=2.14, Summer 4=1.63, Summer 5=1.46). Additionally, only the May and fifth Summer Freshman orientation sessions had a confidence interval with an odds ratio that captured an odds value less than one.

Model 3: Logistic Regression with Outcome Variables Only

Since outcomes of student success are different from inputs (student characteristics or institutional/other support characteristics), the third model only included the outcomes of interest: number of hours earned through the Summer of 2010 and the USA GPA the student attained through the Summer of 2010. The first and second models can be used based on data known before or at least early on after the student comes to campus. However, this third model can only be used after Summer 2010 has ended.

For the third model a comparison group was selected for the number of hours earned and the USA GPA the student attained through the Summer of 2010 (number of hours earned=0-6 hours and USA GPA=2.0 or lower). Compared to the other two models the correct classification rate for the third model (see Table 8: Outcome Model Classification Table) decreased to 86 percent for *returning* students. However, in comparison to the other two models the correct classification rate of the third model dramatically increased to 74 percent for students who did not return since this snapshot was based on data representing Summer 2010 student success outcomes instead of pre-Fall 2009 student and institutional or other support characteristics. The overall correct classification rate for the third model was 82 percent.

Table 8: Outcome Model Classification Table^a

	Observed	Predicted					
			rned	Percentage			
		No	Yes	Correct			
Step 1	Returned No	420	148	73.9			
	Yes	156	971	86.2			
	Overall Percentage			82.1			

a. The cut value is .500

For the third model (see Table 9: Outcome Model Final Variables in the Equation) only hours earned at USA was significant. The third model showed the odds (Exp *B*) of a student *returning* were greater for students with more hours earned (6.5-12=2.92, 12.5-18=7.08, 18.5-24=19.09, 24.5-30=58.72, 30.5 or more=124.58) than for students with six or fewer hours earned by Summer 2010. Furthermore, confidence intervals (95%) for all USA hours earned comparison groups did not encompass an odds value less than one.

Table 9: Outcome Model Final Variables in the Equation

								95% C.I.fo	or EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	USAHoursEarned (0-6)			477.192	5	.000			
	USAHoursEarned (6.5-12)	1.070	.282	14.365	1	.000	2.916	1.677	5.071
	USAHoursEarned (12.5-18)	1.958	.259	57.080	1	.000	7.083	4.262	11.769
	USAHoursEarned (18.5-24)	2.949	.261	127.710	1	.000	19.086	11.444	31.830
	USAHoursEarned (24.5-30)	4.073	.263	240.122	1	.000	58.721	35.081	98.291
	USAHoursEarned (30.5 +)	4.825	.287	283.009	1	.000	124.575	71.007	218.555
	Constant	-2.110	.216	95.318	1	.000	.121		

a. Variable(s) entered on step 1: USAHoursEarned.

Peer Comparisons

Finally, to gain a better idea about how USA retention and graduation rates compared to peer institutions the Integrated Postsecondary Education Data System (IPEDS) was used to compare USA to 28 peer institutions ¹⁴ (see National Center for Education Statistics IPEDS Data Feedback Report 2009). Compared to this group of peer institutions, USA had a somewhat similar but in all cases lower total enrollment, undergraduate enrollment, first-time, degree/certificate-seeking undergraduate enrollment, graduate enrollment, and full-time enrollment in Fall 2008 compared to the peer group median. The percentage of White students (67% for USA and 71% for peers), African-American students (17% for USA and 14% for peers), and female students (62% for USA and 59% for peers) was also somewhat similar compared to the peer group median. The USA percentile composite ACT, English ACT, and Math ACT scores of first-time degree/certificate seeking undergraduate students were almost identical at the 25th and 75th percentiles compared to the peer group median. Retention rates (67% for USA and 75% for peers) and four year (16% for USA and 18% for peers), six year (40% for USA and 45% for peers), and eight year (45% for USA and 50% for peers) graduation rates were also lower for USA compared to the peer group median.

b. Comparison group for USA Hours Earned=0-6 hours.

¹⁴ List of 28 IPEDS Peer Institutions used is included at the end of the Appendix.

National Center for Education Statistics

IPEDS Data Feedback Report 2009

Focus institution=University of South Alabama

Variable Name	USA	Comparison Group Median
Enrollment, by student level (Fall 2008)		
Total (N=28)	14,064	17,302
Undergraduate (N=28)	11,048	14,370
First-time, degree/certificate-seeking undergraduate (N=28)	1,617	2,318
Graduate (N=28)	3,016	3,374
Full-time enrollment (Fall 2008)		
Full-time enrollment (N=28)	10,398	12,177
Percent of all students enrolled who are women (Fall 2008	3)	
Female (N=28)	62%	59%
Percent of all students enrolled, by race/ethnicity (Fall 200	08)	
African American (N=28)	17%	14%
White (N=28)	67%	71%
Percentile ACT scores of first-time, degree/certificate-seek	king undergraduate s	tudents (Fall 2008)
25th percentile Composite (N=27)	19	20
75th percentile Composite (N=27)	24	25
25th percentile English (N=26)	19	20
75th percentile English (N=26)	25	25
25th percentile Math (N=26)	17	19
75th percentile Math (N=26)	24	24
Retention rate of first-time, degree/certificate-seeking un	dergraduate student	s (Fall 2008)
Full-time retention rate (N=28)	67%	75%
Bachelor's degree graduation rates of full-time, first-time, undergraduates within 4 years, 6 years, and 8 years (2000	•	eeking
4 years (N=28)	16%	18%
6 years (N=28)	40%	45%
8 years (N=28)	45%	50%
Note: Red fill color indicates higher #/% between USA and the com	parison peer median fo	r the variable.

Implications

Based on what we know before a student steps foot on campus (input variables), retention of students with lower high school GPAs and students with lower composite ACT scores is a concern which prompts further reflection regarding admission standards and the allocation of resources to support at risk students. Also, retention of students from the Florida service area requires further investigation. When available, the National Student Clearinghouse database is expected to provide insight regarding whether those students are transferring to Pensacola State College since it has been accredited recently as a four year institution.

Likewise, as with the previous Fall 2007 and Fall 2008 cohorts, the orientation session the student attended provided a significant predictor of student persistence, with students attending the earlier Freshman Summer orientation sessions more likely to persist than students attending the later orientation sessions. The orientation session attended by students continues to provide a key factor in identifying atrisk freshmen students early in their college experience. Interventions such as the Fall 2010 peer mentoring pilot can be designed to target at risk students.

Past IRPA studies have looked at the contribution of freshmen scholarships to recruitment and retention goals. As with earlier studies, the importance of awarding freshman scholarships for students was clear. Additional merit based freshman scholarships should also be considered in order to attract top students to the institution since the data suggests they also are very likely to return to continue their studies at USA the following year.

Future Retention Research

This report is the first of two retention studies about the Fall 2009 freshman cohort that will be completed by Institutional Research, Planning and Assessment during the Fall 2010 semester. The second retention study will use National Student Clearinghouse data to explore the issue of "Where did USA Fall 2009 freshmen non returning students go?" This study will determine how many non returning freshmen students transferred to another college or university or "stopped out" of college altogether.

APPENDIX

T-Test Tables

Gender * Independent Samples Test

Gender		Levene for Equa Varia	ality of			t-test	for Equality	of Means		
						Sig. (2-	Mean	Std. Error	Interva	onfidence al of the erence
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
Returned	Equal variances assumed	22.950	.000	-2.438	1709	.015	056	.023	101	011
	Equal variances not assumed			-2.433	1675.698	.015	056	.023	101	011

Freshman Scholarship * Independent Samples Test

		Levene's for Equa Varian	lity of		·	t-test	for Equality	of Means		
F	Freshman Scholarship					Sig. (2-	Mean	Std. Error	Interva	onfidence al of the rence
		F	Sig.	t	Df	tailed)	Difference	Difference	Lower	Upper
Returned	Equal variances assumed	237.474	.000	-7.313	1709	.000	169	.023	214	124
	Equal variances not assumed			-7.535	1574.179	.000	169	.022	213	125

Other Scholarship * Independent Samples Test

		Othici Co								
Other Scholarship		for Equa	vene's Test Equality of /ariances t-test for Equality of Means							
						Sig. (2-	95% Cont Interval 2- Mean Std. Error Differe			al of the
		F	Sig.	T	df	tailed)	Difference	Difference	Lower	Upper
Returned	Equal variances assumed	1.713	.191	628	1709	.530	020	.031	081	.042
	Equal variances not assumed			634	387.514	.526	020	.031	081	.041

Housing * Independent Samples Test

		Levene for Equ Varia	ality of	of						
	Housing		Sig. (2- Mean S				Std. Error	Interva	onfidence al of the rence	
		F	Sig.	T	df	tailed)	Difference	Difference	Lower	Upper
Returned Equal variances assumed		.118	.731	172	1709	.864	004	.023	049	.041
	Equal variances not assumed			172	1706.198	.864	004	.023	049	.041

Freshman Seminar * Independent Samples Test

Freshman Seminar		Levene' for Equa Variar	ality of	t-test for Equality of Means								
						Sig. (2-	95% Confi Interval o Mean Std. Error Differer			al of the		
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper		
Returned	Equal variances assumed	6.833	.009	-1.311	1709	.190	030	.023	075	.015		
	Equal variances not assumed			-1.311	1707.748	.190	030	.023	075	.015		

ANOVA Tables

Multiple Comparisons

(I) Race	(J) Race				95% Cor Inte	
		Mean	Std.		Lower	Upper
		Difference (I-J)	Error	Sig.	Bound	Bound
White	African-American	.080	.029	.064	.00	.16
	Asian	149	.052	.063	30	.00
	Hispanic	075	.072	.900	29	.14
	Non-Resident Alien	184	.071	.134	40	.03
	Other	.031	.053	.992	12	.18
African-American	White	080	.029	.064	16	.00
	Asian	229 [*]	.056	.001	39	06
	Hispanic	156	.075	.320	38	.07
	Non-Resident Alien	264 [*]	.074	.013	49	04
	Other	050	.057	.952	21	.11
Asian	White	.149	.052	.063	.00	.30
	African-American	.229 [*]	.056	.001	.06	.39
	Hispanic	.073	.087	.959	18	.33
	Non-Resident Alien	035	.086	.998	29	.22
	Other	.179	.071	.128	03	.39
Hispanic	White	.075	.072	.900	14	.29
	African-American	.156	.075	.320	07	.38
	Asian	073	.087	.959	33	.18
	Non-Resident Alien	108	.099	.884	40	.18
	Other	.106	.087	.826	15	.36
Non-Resident	White	.184	.071	.134	03	.40
Alien	African-American	.264	.074	.013	.04	.49
	Asian	.035	.086	.998	22	.29
	Hispanic	.108	.099	.884	18	.40
0.1	Other	.214	.086	.145	04	.47
Other	White	031	.053	.992	18	.12
	African-American	.050	.057	.952	11	.21
	Asian	179	.071	.128	39	.03
	Hispanic	106	.087	.826	36	.15
	Non-Resident Alien	214	.086	.145	47	.04

^{*.} The mean difference is significant at the 0.05 level.

(I) Age	(J) Age	Mean	Std.		95% Confide	ence Interval
		Difference (I-J)	Error	Sig.	Lower Bound	Upper Bound
17 years or	18 years old	011	.046	1.000	14	.12
younger	19 years old	.107	.058	.425	06	.27
	20 years old	.061	.126	.996	33	.45
	21 years old	.263	.116	.238	09	.62
	22 years or older	.166	.073	.219	05	.38
18 years old	17 years or younger	.011	.046	1.000	12	.14
	19 years old	.119 [*]	.040	.035	.00	.23
	20 years old	.072	.119	.989	31	.45
	21 years old	.274	.108	.156	06	.61
	22 years or older	.177 [*]	.060	.049	.00	.35
19 years old	17 years or younger	107	.058	.425	27	.06
	18 years old	119 [*]	.040	.035	23	.00
	20 years old	046	.124	.999	43	.34
	21 years old	.156	.114	.743	19	.50
	22 years or older	.058	.070	.961	14	.26
20 years old	17 years or younger	061	.126	.996	45	.33
	18 years old	072	.119	.989	45	.31
	19 years old	.046	.124	.999	34	.43
	21 years old	.202	.160	.801	28	.68
	22 years or older	.104	.132	.967	30	.51
21 years old	17 years or younger	263	.116	.238	62	.09
	18 years old	274	.108	.156	61	.06
	19 years old	156	.114	.743	50	.19
	20 years old	202	.160	.801	68	.28
	22 years or older	098	.122	.966	47	.27
22 years or	17 years or younger	166	.073	.219	38	.05
older	18 years old	177	.060	.049	35	.00
	19 years old	058	.070	.961	26	.14
	20 years old	104	.132	.967	51	.30
	21 years old	.098	.122	.966	27	.47

^{*.} The mean difference is significant at the 0.05 level.

(I) Region	(J) Region	Mean	Std.		95% Confide	ence Interval
		Difference (I-J)	Error	Sig.	Lower Bound	Upper Bound
Mobile or	Rest of Alabama	.041	.031	.757	05	.13
Baldwin	Mississippi Service Area	.010	.040	1.000	11	.13
County	Florida Service Area	.170	.073	.200	05	.39
	Rest of United States	.006	.043	1.000	12	.13
	International	182	.071	.142	40	.04
Rest of	Mobile or Baldwin County	041	.031	.757	13	.05
Alabama	Mississippi Service Area	032	.046	.983	16	.10
	Florida Service Area	.128	.076	.548	10	.35
	Rest of United States	036	.049	.977	18	.10
	International	223	.075	.053	45	.00
Mississippi	Mobile or Baldwin County	010	.040	1.000	13	.11
Service	Rest of Alabama	.032	.046	.983	10	.16
Area	Florida Service Area	.160	.081	.360	08	.40
	Rest of United States	004	.055	1.000	16	.15
	International	191	.079	.173	43	.04
Florida	Mobile or Baldwin County	170	.073	.200	39	.05
Service	Rest of Alabama	128	.076	.548	35	.10
Area	Mississippi Service Area	160	.081	.360	40	.08
	Rest of United States	164	.082	.351	40	.08
	International	352 [*]	.100	.009	64	06
Rest of	Mobile or Baldwin County	006	.043	1.000	13	.12
United	Rest of Alabama	.036	.049	.977	10	.18
States	Mississippi Service Area	.004	.055	1.000	15	.16
	Florida Service Area	.164	.082	.351	08	.40
	International	188	.081	.204	43	.05
International	Mobile or Baldwin County	.182	.071	.142	04	.40
	Rest of Alabama	.223	.075	.053	.00	.45
	Mississippi Service Area	.191	.079	.173	04	.43
	Florida Service Area	.352 [*]	.100	.009	.06	.64
	Rest of United States	.188	.081	.204	05	.43

^{*.} The mean difference is significant at the 0.05 level.

Returned Games-Howell

(I) High School	(J) High School GPA	Mean	Std.		95% Confide	ence Interval
GPA		Difference (I-J)	Error	Sig.	Lower Bound	Upper Bound
2.24 or	2.25-2.5	008	.088	1.000	25	.24
below	2.51-3.0	135	.077	.402	35	.08
	3.01-3.5	257 [*]	.075	.010	47	04
	3.51-4.0	388 [*]	.074	.000	60	18
2.25-2.5	2.24 or below	.008	.088	1.000	24	.25
	2.51-3.0	128	.056	.162	28	.03
	3.01-3.5	249 [*]	.055	.000	40	10
	3.51-4.0	380 [*]	.052	.000	53	23
2.51-3.0	2.24 or below	.135	.077	.402	08	.35
annua .	2.25-2.5	.128	.056	.162	03	.28
	3.01-3.5	121 [^]	.034	.004	22	03
	3.51-4.0	252	.031	.000	34	17
3.01-3.5	2.24 or below	.257 [*]	.075	.010	.04	.47
	2.25-2.5	.249 [*]	.055	.000	.10	.40
	2.51-3.0	.121 [*]	.034	.004	.03	.22
	3.51-4.0	131 [*]	.027	.000	21	06
3.51-4.0	2.24 or below	.388*	.074	.000	.18	.60
	2.25-2.5	.380*	.052	.000	.23	.53
	2.51-3.0	.252 [*]	.031	.000	.17	.34
	3.01-3.5	.131 [*]	.027	.000	.06	.21

^{*.} The mean difference is significant at the 0.05 level.

(I) ACT	(J) ACT	Mean	Std.		95% Confid	ence Interval
		Difference (I-J)	Error	Sig.	Lower Bound	Upper Bound
18 or below	19-20	104	.039	.084	22	.01
	21-23	120 [*]	.039	.023	23	01
	24-26	169 [*]	.039	.000	28	06
	27-29	267 [*]	.044	.000	39	14
	30 or above	355 [*]	.046	.000	49	22
19-20	18 or below	.104	.039	.084	01	.22
	21-23	016	.036	.998	12	.09
	24-26	064	.036	.487	17	.04
	27-29	163 [*]	.042	.002	28	04
	30 or above	251 [*]	.044	.000	38	12
21-23	18 or below	.120	.039	.023	.01	.23
	19-20	.016	.036	.998	09	.12
	24-26	049	.036	.752	15	.05
	27-29	147 [*] .	.041	.005	26	03
	30 or above	235 [*]	.044	.000	36	11
24-26	18 or below	.169	.039	.000	.06	.28
	19-20	.064	.036	.487	04	.17
	21-23	.049	.036	.752	05	.15
	27-29	099	.041	.162	22	.02
	30 or above	186 [*]	.044	.001	31	06
27-29	18 or below	.267 *	.044	.000	.14	.39
	19-20	.163*	.042	.002	.04	.28
	21-23	.147	.041	.005	.03	.26
	24-26	.099	.041	.162	02	.22
	30 or above	088	.048	.457	23	.05
30 or	18 or below	.355*	.046	.000	.22	.49
above	19-20	.251	.044	.000	.12	.38
	21-23	.235	.044	.000	.11	.36
	24-26	.186 [*]	.044	.001	.06	.31
	27-29	.088	.048	.457	05	.23

^{*.} The mean difference is significant at the 0.05 level.

Returned Games-Howell

(I) College	(J) College	Mean	Std.		95% Confid	ence Interval
		Difference (I-J)	Error	Sig.	Lower Bound	Upper Bound
AS	AH	084	.033	.135	18	.01
	BU	.073	.041	.565	05	.20
	CS	010	.075	1.000	24	.22
	ED	.005	.048	1.000	14	.15
	EG	.002	.040	1.000	12	.12
	NU	035	.035	.957	14	.07
AH	AS	.084	.033	.135	01	.18
	BU	.158 [*]	.046	.012	.02	.29
	_ CS	.074	.077	.961	16	.31
	ED	.090	.052	.611	07	.25
	EG	.086	.045	.457	05	.22
	NU	.049	.041	.891	07	.17
BU	AS	073	.041	.565	20	.05
	AH	158 [*]	.046	.012	29	02
	_ CS	084	.081	.945	33	.16
	ED	068	.058	.905	24	.10
	EG	071	.051	.805	22	.08
	NU	108	.048	.267	25	.03
CS	AS	.010	.075	1.000	22	.24
	AH	074	.077	.961	31	.16
attendent	_ BU ED	.084	.081	.945	16	.33 .27
	EG	.016 .012	.085 .080	1.000	24 23	.26
	NU	025	.078	1.000	25 26	.20
ED	AS	025	.048	1.000	15	.14
	AH	090	.052	.611	25	.07
	BU	.068	.058	.905	10	.24
	_ CS	016	.085	1.000	27	.24
	EG	003	.057	1.000	17	.17
	NU	040	.054	.990	20	.12
EG	AS	002	.040	1.000	12	.12
	AH	086	.045	.457	22	.05
	BU	.071	.051	.805	08	.22
	CS	012	.080	1.000	26	.23
	ED	.003	.057	1.000	17	.17
	NU	037	.047	.986	18	.10
NU	AS	.035	.035	.957	07	.14
	AH	049	.041	.891	17	.07
	BU	.108	.048	.267	03	.25
	CS	.025	.078	1.000	21	.26
	ED	.040	.054	.990	12	.20
	EG	.037	.047	.986	10	.18

^{*.} The mean difference is significant at the 0.05 level.

Returned Games-Howell

(I) Orientation	(J) Orientation	Mean	Std.		95% Confide	ence Interval
		Difference (I-J)	Error	Sig.	Lower Bound	Upper Bound
August/Transfer	May Orientation	146	.060	.186	32	.03
	Freshman Session 1	328 [*]	.039	.000	44	21
	Freshman Session 2	291 [*]	.042	.000	41	17
	Freshman Session 3	254 [*]	.041	.000	38	13
	Freshman Session 4	185 [*]	.044	.001	31	06
	Freshman Session 5	128 [*]	.043	.047	26	.00
May Orientation	August/Transfer	.146	.060	.186	03	.32
	Freshman Session 1	182 [*]	.056	.023	35	02
	Freshman Session 2	146	.058	.157	32	.03
	Freshman Session 3	108	.057	.497	28	.06
	Freshman Session 4	039	.059	.995	22	.14
	Freshman Session 5	.018	.059	1.000	16	.19
Freshman Session 1	August/Transfer	.328*	.039	.000	.21	.44
	May Orientation	.182 [*]	.056	.023	.02	.35
	Freshman Session 2	.037	.036	.949	07	.14
	Freshman Session 3	.074	.036	.366	03	.18
	Freshman Session 4	.144	.038	.004	.03	.26
	Freshman Session 5	.200*	.038	.000	.09	.31
Freshman Session 2	August/Transfer	.291	.042	.000	.17	.41
	May Orientation	.146	.058	.157	03	.32
	Freshman Session 1	037	.036	.949	14	.07
	Freshman Session 3	.038	.038	.958	08	.15
	Freshman Session 4	.107	.041	.125	01	.23
	Freshman Session 5	.163 [*]	.040	.001	.04	.28
Freshman Session 3	August/Transfer	.254	.041	.000	.13	.38
	May Orientation	.108	.057	.497	06	.28
	Freshman Session 1	074	.036	.366	18	.03
	Freshman Session 2	038	.038	.958	15	.08
	Freshman Session 4	.069	.041	.618	05	.19
	Freshman Session 5	.126*	.040	.029	.01	.24
Freshman Session 4	August/Transfer	.185	.044	.001	.06	.31
	May Orientation	.039	.059	.995	14	.22
	Freshman Session 1	144	.038	.004	26	03
	Freshman Session 2	107	.041	.125	23	.01
	Freshman Session 3	069	.041	.618	19	.05
	Freshman Session 5	.057	.042	.835	07	.18
Freshman Session 5	August/Transfer	.128	.043	.047	.00	.26
	May Orientation	018	.059	1.000	19	.16
	Freshman Session 1	200 [*]	.038	.000	31	09
	Freshman Session 2	163	.040	.001	28	04
	Freshman Session 3	126 [*]	.040	.029	24	01
	Freshman Session 4	057	.042	.835	18	.07

^{*.} The mean difference is significant at the 0.05 level.

(I) % Taught by	(J) % Taught by	Mean	Std.		95% Confide	ence Interval
Adjuncts	Adjuncts	Difference (I-J)	Error	Sig.	Lower Bound	Upper Bound
No	Low	059	.038	.405	16	.04
adjuncts	Medium	.054	.039	.516	05	.15
	High	.087	.052	.346	05	.22
Low	No adjuncts	.059	.038	.405	04	.16
	Medium	.113 [*]	.025	.000	.05	.18
	High	.146 [*]	.043	.005	.03	.26
Medium	No adjuncts	054	.039	.516	15	.05
	- Low	113 [*]	.025	.000	18	05
	High	.033	.044	.874	08	.15
High	No adjuncts	087	.052	.346	22	.05
	- Low	146 [^]	.043	.005	26	03
	Medium	033	.044	.874	15	.08

^{*.} The mean difference is significant at the 0.05 level.

Returned Games-Howell

(I) USA Hours	(J) USA Hours Earned	Mean	Std.		95% Confid	ence Interval
Earned		Difference (I-J)	Error	Sig.	Lower Bound	Upper Bound
0-6 hours	6.5-12 hours	153 [^]	.041	.003	27	04
	12.5-18 hours	354 [*]	.041	.000	47	24
	- 18.5-24 hours	590 [*]	.037	.000	70	48
	24.5-30	769 [*]	.026	.000	84	69
	30.5 or more hours	830 [*]	.024	.000	90	76
6.5-12 hours	0-6 hours	.153 [*]	.041	.003	.04	.27
	12.5-18 hours	201 [*]	.050	.001	34	06
	- 18.5-24 hours	437 [*]	.047	.000	57	30
	24.5-30	616 [*]	.039	.000	73	50
	30.5 or more hours	677 [^]	.037	.000	78	57
12.5-18 hours	0-6 hours	.354	.041	.000	.24	.47
	6.5-12 hours	.201	.050	.001	.06	.34
	 18.5-24 hours 	236 [*]	.047	.000	37	10
	24.5-30	415 [*]	.039	.000	53	30
400	30.5 or more hours	476 [*]	.037	.000	58	37
18.5-24 hours	0-6 hours	.590 [*]	.037	.000	.48	.70
	6.5-12 hours	.437*	.047	.000	.30	.57
	 12.5-18 hours 	.236 [*]	.047	.000	.10	.37
	24.5-30	179 [*]	.035	.000	28	08
	30.5 or more hours	240 [*]	.033	.000	33	15
24.5-30	0-6 hours	.769 [*]	.026	.000	.69	.84
	6.5-12 hours	.616 [*]	.039	.000	.50	.73
	 12.5-18 hours 	.415 [*]	.039	.000	.30	.53
	18.5-24 hours	.179 [*]	.035	.000	.08	.28
	30.5 or more hours	061 [*]	.020	.023	12	01
30.5 or more	0-6 hours	.830 [*]	.024	.000	.76	.90
hours	6.5-12 hours	.677	.037	.000	.57	.78
	 12.5-18 hours 	.476 [*]	.037	.000	.37	.58
	18.5-24 hours	.240*	.033	.000	.15	.33
	24.5-30	.061	.020	.023	.01	.12

^{*.} The mean difference is significant at the 0.05 level.

(I) USA GPA (J) USA GPA		Mean	Std.		95% Confidence Interval	
		Difference (I-J)	Error	Sig.	Lower Bound	Upper Bound
2.0 or below	2.01-2.5	403	.033	.000	49	31
	2.51-3.0	442 [*]	.031	.000	53	36
	3.01-3.5	517 [*]	.028	.000	59	44
	3.51-4.0	533 [*]	.027	.000	61	46
2.01-2.5	2.0 or below	.403	.033	.000	.31	.49
	2.51-3.0	039	.036	.818	14	.06
	3.01-3.5	113 [*]	.034	.007	21	02
	3.51-4.0	130 [*]	.033	.001	22	04
2.51-3.0	2.0 or below	.442 [*]	.031	.000	.36	.53
	2.01-2.5	.039	.036	.818	06	.14
	3.01-3.5	074	.031	.115	16	.01
	3.51-4.0	091 [*]	.030	.022	17	01
3.01-3.5	2.0 or below	.517 [*]	.028	.000	.44	.59
	2.01-2.5	.113 [*]	.034	.007	.02	.21
	2.51-3.0	.074	.031	.115	01	.16
	3.51-4.0	016	.027	.973	09	.06
3.51-4.0	2.0 or below	.533 [*]	.027	.000	.46	.61
	2.01-2.5	.130	.033	.001	.04	.22
	2.51-3.0	.091	.030	.022	.01	.17
	3.01-3.5	.016	.027	.973	06	.09

^{*.} The mean difference is significant at the 0.05 level.

USA Peer Comparison Group

Institution Name	City	State	Unit ID
Auburn University Main Campus	Auburn	AL	100858
East Carolina University	Greenville	NC	198464
East Tennessee State University	Johnson City	TN	220075
Florida Gulf Coast University	Fort Myers	FL	433660
Georgia State University	Atlanta	GA	139940
Jacksonville State University	Jacksonville	AL	101480
James Madison University	Harrisonburg	VA	232423
Kennesaw State University	Kennesaw	GA	140164
Louisiana Tech University	Ruston	LA	159647
Marshall University	Huntington	wv	237525
Middle Tennessee State University	Murfreesboro	TN	220978
Old Dominion University	Norfolk	VA	232982
The University of Alabama	Tuscaloosa	AL	100751
The University of West Florida	Pensacola	FL	138354
Troy University	Troy	AL	102368
University of Alabama at Birmingham	Birmingham	AL	100663
University of Alabama in Huntsville	Huntsville	AL	100706
University of Arkansas at Little Rock	Little Rock	AR	106245
University of Louisville	Louisville	KY	157289
University of Missouri-Kansas City	Kansas City	МО	178402
University of North Carolina at Charlotte	Charlotte	NC	199139
University of North Carolina at Greensboro	Greensboro	NC	199148
University of North Florida	Jacksonville	FL	136172
University of North Texas	Denton	TX	227216
University of Southern Mississippi	Hattiesburg	MS	176372
Valdosta State University	Valdosta	GA	141264
Wayne State University	Detroit	МІ	172644
Wichita State University	Wichita	KS	156125